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Abstract

A Taylor-based nonlocal theory of plasticity is proposed to account for the size dependence of plastic deformation at
micron and submicron length scales. This theory is intended to link Taylor’s model of dislocation hardening to a
nonlocal theory of plasticity in which the density of geometrically necessary dislocations is expressed as a nonlocal
integral of the strain field. We make application of this theory to void growth, cavitation instabilities and particle-
reinforced composites, as well as comparison with experiments on micro-torsion, micro-bending and micro-indenta-
tion. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is mounting experimental evidence that materials display strong size effects when the characteristic
length scale associated with nonuniform plastic deformation is on the order of microns. Fleck et al. (1994)
conducted micro-twisting of thin copper wires and reported an increase by a factor of 3 in the normalized
shear strength as the wire diameter decreases from 170 to 12 pum while the increase of work-hardening in
simple tension of the same wires is negligible. Stolken and Evans (1998) investigated micro-bending of thin
nickel beams and observed a similar magnitude of increase in the normalized bending strength as the beam
thickness decreases from 100 to 12.5 um. Lloyd (1994) studied metal matrix composites such as aluminum—
magnesium matrix reinforced by silicon carbide particles and observed a substantial strength increase as the
particle diameter was reduced from 16 to 7.5 pm with the particle volume fraction fixed at 15%. Similar size
dependence of the metal matrix composites has also been observed by Nan and Clarke (1996). In micro-
indentation tests of various metallic materials, the measured indentation hardness increases by a factor of
two as the depth of indentation decreases from 10 to 1 pum (Nix, 1989; De Guzman et al., 1993; Stel-
mashenko et al., 1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998).

Size-dependent plasticity may also be important in explaining the fracture behavior of ductile materials.
Elssner et al. (1994) measured both the macroscopic fracture toughness and atomic work of separation of

*Corresponding author. Fax: +1-650-723-1778.
E-mail address: gao@am-sun2.stanford.edu (H. Gao).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00173-6



2616 H. Gao, Y. Huang | International Journal of Solids and Structures 38 (2001) 2615-2637

an interface between a single crystal of niobium and a sapphire single crystal. The macroscopic work of
fracture was measured using a four-point bend specimen designed for the determination of interfacial
toughness, while the atomic work was inferred from the equilibrium shapes of microscopic pores on the
interface. The interface between the two materials remained atomistically sharp, i.e. the crack tip was not
blunted even though niobium is ductile and has a large number of dislocations. The stress level needed to
produce atomic decohesion of a lattice or a strong interface is typically on the order of 3% of Young’s
modulus, or 10 times the tensile yield stress. Hutchinson (1997) pointed out that the maximum stress level
that can be achieved near a crack tip cannot reach higher than four to five times the tensile yield strength of
metals, according to models based on conventional plasticity theories. This clearly falls short of triggering
the atomic decohesion observed in the experiments of Elssner et al. (1994). The linkage between macro-
scopic cracking and atomistic fracture is crucially important in predicting adhesion strength and fracture
toughness of multilayer structures in microelectronic devices (Dauskardt et al., 1998).

Classical theories of plasticity possess no internal length scale and cannot explain the size dependence of
plasticity observed in experiments. From a microscopic point of view, plastic deformation in metallic
materials reflects the collective behavior of a vast number of dislocations. When a material is deformed,
dislocations are generated, moved, and stored, and the storage causes the material to work harden. Dis-
locations become stored for one of the two reasons: they accumulate by trapping each other in a random
way, or they are required for compatible deformation of various parts of the material. In the former case
the dislocations are referred to as statistically stored dislocations (Ashby, 1970), while in the latter case,
they are called geometrically necessary dislocations.

Geometrically necessary dislocations can be related to the gradients of plastic strain in a material (Nye,
1953; Cottrell, 1964; Ashby, 1970). This consideration has motivated Fleck and Hutchinson (1993, 1997)
and Fleck et al. (1994) to develop a phenomenological theory of strain gradient plasticity within the
mathematical framework of higher-order continuum theories of elasticity (Toupin, 1962; Koiter, 1964;
Mindlin, 1964). The importance of strain gradients in plastic deformation has also been recognized by
many other researchers in the past (e.g., Kroener, 1962; Aifantis, 1984; Zbib and Aifantis, 1989a,b,c; de
Borst and Muhlhaus, 1992). The phenomenological nature of these theories often leads to numerous model
parameters which are difficult to be fully tested based on the limited number of micromechanical, gradient-
dominant experiments. Nix and Gao (1998) found that micro-indentation experiments strongly suggest a
linear dependence of the square of plastic flow stress on strain gradient. While such linear dependence is
predicted by the Taylor model of dislocation hardening which relates the flow stress to dislocation density,
the phenomenological strain gradient theories have not been able to explain such behavior. This has
motivated Gao et al. (1999a) and Huang et al. (2000a) to develop a mechanism-based theory of strain
gradient (MSG) plasticity which builds the Taylor model as a foundation into the higher-order continuum
framework of Fleck and Hutchinson (1997). In comparison with phenomenological theories, the MSG
theory has minimum number of adjustable parameters and gives predictions in good agreement with ex-
periments on micro-torsion, micro-bending and micro-indentation (Gao et al., 1999b).

As strain gradient plasticity theories involve the gradient of plastic strain in the constitutive equations,
the order of governing equations becomes higher such that additional boundary conditions must be im-
posed. A new effort is to explore alternative frameworks which could model size-dependent plasticity
without higher-order stresses and strains, so as to preserve the essential structure of classical plasticity.
Acharya and Bassani (2000) discussed a rate-independent framework in which the stress increments are
related to strain increments via a plastic work hardening modulus that depends not only on the plastic
strain, but also on the gradient of plastic strain. Dai and Parks (2000), on the other hand, have developed a
rate-dependent single crystal plasticity framework in which the shear strain rate on a slip system is expressed
as a power-law function of the critical resolved shear stress and the slip resistance on the given slip system.
The strain gradient effects come into play through the slip resistance which increases with strain gradients
according to the obstacle density that correlates with dislocation densities on all active slip systems.
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In this paper, we explore the possibility of modeling size-dependent plasticity within the framework of
nonlocal continuum theories. It is known that the basic balance laws in a nonlocal continuum theory are
identical to classical local theories (Eringen, 1981, 1983), i.e. the order of governing equations remains the
same as that of a classical theory. In comparison with a high order theory, a nonlocal theory does not
require additional boundary conditions and the length scale is introduced into the constitutive equations
via nonlocal variables which are expressed as an integral of local variables over all the material points in the
body. Various nonlocal plasticity theories have already been used in the past (e.g., Bazant et al., 1984;
Basant, 1986; Pijaudier-Cabot and Bazant, 1987; Bazant and Lin, 1988; Stromberg and Ristinmaa, 1996;
Chen, 1999) to provide a length scale in the description of strain softening and damage accumulation in
deformed solids. We intend to link such theories with the Taylor model of dislocation hardening and to
provide a micromechanical basis for using nonlocal theories to model size-dependent plastic deformation at
micron and submicron length scales.

2. Theory formulation
2.1. The micromechanical basis of size-dependent plasticity

Dislocation theory indicates that the Peach—Koehler force due to interaction of a pair of dislocations is
proportional to

ub
Tpair ™~ Ta (1)

where p is the shear modulus, b, the Burgers vector and L, the distance between dislocations. This stress sets
a critical value for the applied stress to break or untangle the interactive pair so that slip can occur even if
one of the dislocation is pinned by an obstacle. This picture is generalized by the Taylor model to a group of
statistically stored dislocations which trap each other in a random way. If the mean dislocation spacing is L,
the critical stress required to untangle the interactive dislocations and to induce significant plastic defor-
mation is defined as

T= OCLLb = oub\/p, )

where p = 1/L? is the dislocation density and o, an empirical constant usually on the order of 1 (e.g., Nix
and Gibeling, 1985). The Taylor flow stress can also be viewed as the ‘passing stress’ for a moving dislo-
cation to glide through a forest of tangled dislocations without being pinned. The similarity between the
Taylor model and the interaction of a pair of dislocations indicates the potential of using Eq. (2) as a
fundamental measure of dislocation interaction at length scales close to those of discrete dislocations.
Nix and Gao (1998) generalized the Taylor relation to account for geometrically necessary dislocations

T = auby/pt = oubr/ps + pg, (3)

where pr is the total dislocation density, pg, the density of statistically stored dislocations and pg, the
density of geometrically necessary dislocations. In writing the total obstacle density as a direct sum of pg and
pg» the Taylor flow stress has been viewed as the ‘passing stress’ for a moving dislocation to glide through a
forest of obstacles consisting of both the statistically stored and geometrically necessary dislocations. Nix
and Gao (1998) used the von Mises rule to relate the tensile flow stress to the shear flow stress as o = /37,
where the factor v/3 results from isotropy of solids. For crystalline materials (e.g., face-centered-cubic
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solids), a more accurate relationship accounting for the so-called Taylor factor (Bishop and Hill, 1951a,b;
Kocks, 1970) between the tensile flow stress and critical resolved shear stress in slip systems is

0 = 31 =3auby/ps + pg- (4)

The density of statistically stored dislocations pg can be determined (Nix and Gao, 1998) from the uniaxial
stress—strain law in the absence of strain gradient effects,

0 = 3oub\/ps = orweif (€), (5)

where o is a reference stress in uniaxial tension. On the other hand, the density of geometrically necessary
dislocations pg can be related to an effective strain gradient 5 as

PG = 217/b7 (6)

where the factor of 2 is the so-called Nye factor (Arsenlis and Parks, 1999) for a polycrystalline material.
The actual density of geometrically necessary dislocations depends not only on nonuniform deformation
(strain gradients), but also on the orientation of slip systems. The Nye factor accounts for ratio of average
density of geometrically necessary dislocations to that for the most efficient dislocation configurations
considered by Gao et al. (1999a). Actually, the Nye factor may depend on the material as well as the type of
external loading. Arsenlis and Parks (1999) have found the Nye factor to be 1.85 in the case of bending and
1.93 in the case of torsion of FCC polycrystals. In general, it is anticipated that the Nye factor is on the
order of two for FCC polycrystals and can be as high as three for FCC single crystals (Parks, 1999).
Combining Egs. (3)—(6) leads to a law of strain gradient plasticity (Nix and Gao, 1998),

0 = Oref 4f2(€) + &17 (7)
where
2
0= 18a2<i> b 8)
Oref

is identified as the material length introduced by Fleck and Hutchinson (1993, 1997). A typical estimate of ¢
is on the order of a few microns.

In order to develop a constitutive law based on Eq. (7), the density of geometrically necessary dislo-
cations pg must be related to the strain gradient tensor

Nijk = Ukjj = €ikj T €k = €ijks ©)
]

where u; and ¢;; denote the displacements and strains, respectively. Following Fleck and Hutchinson (1997),
Gao et al. (1999a) defined

n= \/01’7;{/{7]‘,//‘/{ + Cz?lf,-mﬁ,-k + 63772//('7;;/’{ (10)

as an effective strain gradient which measures the density of geometrically necessary dislocations as
P = 2n/b; the three constants c;, ¢;, and ¢; scale the three quadratic invariants for the third order devi-
atoric strain gradient tensor #;; given by

n;jk = Nk — %(5fk’/]jpp + 5/'k'7ipp)a (11)
where 6;; is the Kronecker delta. Fleck and Hutchinson (1997) intended to determine ¢y, ¢», and ¢; from
experimental data. However, Gao et al. (1999a) determined these constants from dislocation models of
plane strain bending, pure torsion and two-dimensional axisymmetric void growth. Their results indicate
1 3 = 0 (12)

=0, =y
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such that the effective strain gradient is

_ 1
n= 1172,-;{712,-/(7 (13)
which, interestingly, is similar to the von Mises effective strain in conventional plasticity

e= 13y =Wy & =5+ u). (14)

One method of linking Taylor’s model to continuum theories is the MSG plasticity (Gao et al., 1999a)
which is based on a multiscale, hierarchical framework illustrated in Fig. 1(a). A mesoscale cell with linear
variation of strain field is considered. Each point within the cell is considered as a microscale sub-cell within
which dislocation interaction is assumed to obey the Taylor relation so that the strain gradient law of Eq.
(7) applies. On the microscale, the 7 term is simply viewed as a measure of the density of geometrically
necessary dislocations whose accumulation increases the flow stress. In other words, microscale plastic flow
is assumed to occur as slip of statistically stored dislocations in a background of geometrically necessary
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Fig. 1. (a) The multiscale framework for mechanism-based strain gradient plasticity; the microscale strains ¢ and stresses ¢ are linked to
dislocation interaction via the Taylor relation; strain gradients n and higher-order stresses t are introduced as local variables on the
mesoscale level. (b) The framework of TNT; the strain gradients ; are expressed as a nonlocal integral average of the strain field over a
small representative cell to account for the effects of geometrically necessary dislocations.
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dislocations and the microscale plastic deformation is assumed to obey the Taylor work hardening relation
and the associative laws of conventional plasticity. The notion of geometrically necessary dislocations is
connected to the gradient of the strain field on the level of the mesoscale cell. Higher-order stresses are
introduced as thermodynamic conjugates of the strain gradients at the mesoscale level on which the MSG
plasticity is formulated. This hierarchical structure provides a systematic approach for constructing the
mesoscale constitutive laws by averaging microscale plasticity laws over the representative cell. The con-
stitutive equations of the MSG theory is derived based on the following principles:

1. The microscale flow stress is governed by the dislocation motion and obeys the Taylor hardening relation
as exhibited by the strain gradient law of Eq. (7).

2. Strain gradient plasticity is considered a mesoscale description of dislocation activities and as such it
must be derivable from the dislocation-based microscale plasticity laws.

3. The associative flow rule of plastic deformation is preserved on the microscale. This is justified by linking
the microscale plastic flow to slip of statistically stored dislocations in a background of geometrically
necessary dislocations. The associative rule holds if dislocation slip is assumed to be proportional to
the resolved Schmid stress along an appropriate slip system (Rice, 1970, 1971).

2.2. Density of geometrically necessary dislocations as a nonlocal variable of plastic strain

The density of geometrically necessary dislocations ps has been expressed in terms of the gradient of
plastic strain, leading to theories of strain gradient plasticity with higher-order stresses and strains. Is it
possible to express pg in terms of plastic strain only, in which case no higher-order stresses need to be
introduced? The answer to this question is positive if one considers the framework of nonlocal plasticity.

To see the essential idea, let us first ask the question: Why was the hierarchical framework shown in Fig.
1(a) necessary for the development of MSG theory? The reason is that the mesoscale was necessary to link
the density of geometrically necessary dislocations to strain gradients which become higher-order strains in
the constitutive equations. However, an alternative way of accomplishing this linkage is to write strain
gradients as a nonlocal integral of strains such that p5 can be calculated from strains without having to
resort to the mesoscale. Consider the Taylor expansion of a strain component ¢; in the neighborhood of
point x

€(x + &) = €;(x) + €& + O(EP), (15)

where & denotes local coordinates centered at x. Integrating this equation with &, over a small represen-
tative volume Vg containing x (Fig. 1(b)), we find

/Vcel] Eij(x * é)éde = 6ij(X)/V éde + 61:;‘-,’”/[, ékédea (16)

cell cell

where the characteristic size, /., of V. is assumed to be sufficiently small such that terms of higher order in
£, are negligible. Therefore, the gradient term ¢;;; can be expressed in terms of an integral of strain e,

Cijk = /
V

cell

fey(x+8) - ei,-(x)]éde< / ékémd@l, (17)

where ([, ) & dV)_1 is the inverse of [, , &.£,dV. In the case of a cubic representative cell centered at x,
Eq. (17) reduces to

1
Cijk :I_/V ;¢ dV, (18)

cell
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where /. is the moment of inertia of the representative cell and is related to the edge length ¢, of the cube by

IEZ/V fde:%éf. (19)

cell

The above example is the key idea of this paper. By representing strain gradients as a nonlocal integral of
strains we will be able to calculate the density of geometrically necessary dislocations as a nonlocal variable
in the constitutive equations which involves no higher-order stresses nor strain gradients. We shall adopt
the following guiding principles in the nonlocal constitutive framework:

1. The flow stress obeys the Taylor hardening relation as exhibited by the strain gradient law of Eq. (7).

2. The density of geometrically necessary dislocations is calculated as nonlocal variables expressed in terms
of a weighted average of plastic strain.

3. The essential structure of classical plasticity is preserved.

According to Egs. (6) and (13), the density of geometrically necessary dislocations is related to the strain

gradient tensor as pg = 2n/b, where n = /1, 1}, /4. In the nonlocal constitutive framework to be discussed
below, the deviatoric strain gradients #;; in Eq. (11) will be treated as nonlocal variables,
1 1
n;jk = 7 /V |:€ikéj +epl — €& — 2 (5ikéj + 5jkéi) 6pp:| dav, (20)
€ cell

where we have assumed a cubic representative cell centered at x for simplicity. In the limit of ¢/, — 0, the
right-hand side of Eq. (20) naturally converges to the strain gradient form of n;jk. The general averaging
procedure described in Eq. (17) should be used for cells of other shapes and for points near the boundary.

2.3. Deformation theory of TNT

The deformation theory of Taylor-based nonlocal theory (TNT) of plasticity assumes the same structure
as the classical plasticity theories (Hill, 1950). The strains are decomposed into a volumetric part and a
deviatoric part,

€j = %Ekkéz:/' + 62,—- (21)

The volumetric strain ¢y is related to the hydrostatic stress oy via the elastic bulk modulus K =
E/[3(1 = 2v)] (E is Young’s modulus and v, Poisson’s ratio),

Ok

€k = = - 22

Y (22)
The deviatoric strains ej.j are proportional to deviatoric stresses a;j =0 — %akké,-j such that

A

¢, = id, (23)
with the coefficient 4 given by

1/2
€. 3
p= ) = (24)
01,07 20,

where € = | /(2/3)€;€; is the effective strain as in Eq. (14), and

0. = \/30,0); (25)

is the effective stress. The yield criterion is
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0. = 0 = o/ f2(€) + Iy (26)

Combining these relationships lead to the following constitutive equations for the deformation theory of
TNT:

o = 3Ke, (27)
6o/ F2

‘75’/‘ = 2 J; () + E_r/ Egjv (28)
- €

where ¢ = 18a2(u/ aref)zb has been given in Eq. (8) and 7 is a nonlocal variable defined by Eqgs. (13) and (20).

2.4. Flow theory of TNT

In the flow theory of TNT, the constitutive equations are expressed in rate form. The strain rates can be
decomposed into a volumetric part and a deviatoric part

é,‘j == %ékkéij + 6.;-]-, (29)
where the volumetric strain rate is purely elastic and is related to the hydrostatic stress rate 6y as

. dkk

€k = =—- 30

L (30)
The deviatoric strain rate consists of an elastic part and a plastic part,

e -p

€ = €t & (31)
where the elastic strain rate efj' is proportional to the deviatoric stress rate (J';j via the shear modulus p,

G

& =20 32
The plastic strain rate éf;- is proportional to the deviatoric stress o), = 0;; — oy /3 by the associative rule

o g

€ = )LJU (33)
with the coefficient A given by

2\,
. €ij€ij €P
i=| = = (34)
;0% 20,

where

p _ [2:p:p

€ = \/36€ (35)

is the effective plastic strain rate and o, = ,/30},07;/2 is the effective stress. Combining Eqs. (31)—(34) leads

to
. . €
G = 2 <ei/ — o J;]) . (36)

The effective plastic strain €? is obtained from the effective plastic strain rate éP as

o= [aa (37)
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For the flow theories of plasticity, it is useful to write the uniaxial stress—strain relation in terms of the
plastic strain P as

0 = Oretfp(€°), (38)

where f,, is a function of plastic strain, and it is related to the elastic—plastic uniaxial stress—strain relation
0 = owtf (€) in previous sections by

Sole) = 1(6) = £ @ + T2 1) (39)

The yield criterion is

Oc = 0 = Orery [/ /5 (€?) + 0. (40)

Differentiating the square of Eq. (40) with respect to time gives the consistency condition

2066, = 30,6 = o2 (2438 + 1), (41)
where
N
n= E”ijknijkv (42)
. | ) . . | .
Mk = 7 €+ €l — €8k — 2 (5ik§j + 5jkfi)€pp dv (43)
€ J Ve

are obtained from Egs. (13) and (20), respectively. Inserting Eq. (36) into Eq. (41) leads to

/ol »
6UT € — O]

&P = ) (44)
2(3uo. + O'feffpf;;)
Taking account of the possibility of elastic unloading, the plastic strain rate é° is given by

6;15;%;.76?6 0 . _ .

P — 72(3uale+/ofﬁf;f,4> if 6. =0 and 6. >0, (45)
0 if . <o or g, <O0.

Finally, the constitutive equations for the flow theory of TNT plasticity are assembled as
o = 3K €y, (46)
g ﬁ 6,1162,6';‘[7173&1)'1 . - .
G;] = 2‘“ <Ei.f 40 3;we+afeffpfr; if 0c =0 and Oe = 07 (47)

2,ué;j ifo.<o or 6.<0,

where the nonlocal variable 7 is given by the strain rates according to Egs. (42) and (43).

Under proportional deformation, it can be shown that the flow theory of TNT coincides with the de-
formation theory of TNT.

It is interesting at this point to make a comparison between TNT and the classical plasticity. In the
classical flow theory, the consistency condition is used to derive a point-wise relation between the stress rate
and strain rate,

6=D(a): ¢, (48)



2624 H. Gao, Y. Huang | International Journal of Solids and Structures 38 (2001) 2615-2637

where D (o) is the local elastic—plastic stiffness tensor. In contrast, the TNT flow theory has a nonlocal
relation between the stress rates and strain rates,

6 = G(e€, € (€), (€), (49)

where (...) denotes integral average over a small representative volume.

In the strain-based algorithm of TNT, the stress rate is fully determined from the current strain field and
a kinematically admissible strain rate. However, in a stress-based algorithm, an integral equation needs to
be solved for strain rates in terms of the given stress rates. Also, we note that the representative volume in
TNT is only used to determine the gradients of the strain field. The size of the averaging cell is thus not a
material constant and should be made sufficiently small as well as convenient in practical numerical im-
plementations.

2.5. Balance laws

The balance laws of a nonlocal continuum theory are identical to those of the classical local theories
(Eringen, 1981, 1983). This is also the case for TNT plasticity. For example, the balance of angular and
linear momentum leads to a symmetric stress tensor ¢; which satisfies the equilibrium equation

i +J; = poj, (50)

where f; denotes the body force, p the mass density and v, the velocity.

2.6. Intrinsic length in TNT

As discussed before, the size of the averaging cell should not be regarded as a material constant; it should
be made sufficiently small as well as convenient in practical numerical implementations. The strain gradient
length ¢ in Eq. (8), however, is an intrinsic material length that represents a combined effect of elasticity
(shear modulus u), plasticity (reference stress o.¢ in uniaxial tension), and the atomic nature of solids
(Burgers vector b). The intrinsic material length ¢ has been modified (Huang et al., 1999, 2000b) from its
original expression (Nix and Gao, 1998) in order to account for the effect of crystallinity of materials (e.g.,
Taylor’s factor, Nye’s factor). The preliminary results based on the TNT plasticity with the intrinsic ma-
terial length in Eq. (8) agree well with microscale experiments (see Section 4 for details).

We would like to point out that, although the intrinsic material length ¢ in Eq. (8) appears to depend on
how the reference stress oy is defined, the TNT theory is independent of the choice of o,¢. This can be seen
from the flow stress in Eq. (26), which can be written as

o=\ [t () + 18(on) by (s1)

which depends only on the uniaxial stress—strain relation and the effective strain gradient, but not on the
precise definition of o,¢. In other words, even though o, and ¢ appear in the formulation of TNT plas-
ticity, they always appear in the form of o,/ (€) or o2,:¢ such that TNT plasticity is independent of 6.

Only for the purpose of estimating the intrinsic material length ¢ will one need to define the reference
stress or in uniaxial tension. A convenient choice is through the power-law stress—strain relation, ¢ =
orre” (N is the plastic work hardening exponent). The intrinsic material length in Eq. (8) is approximately 4
pm for copper with the parameters o = 1, b = 0.255 nm, p = 0.375E (E is Young’s modulus), g, = Ee} ",
ey = 0.002 is the yield strain, and N = 0.3 is the plastic work hardening exponent. This agrees with the
estimate of Fleck et al. (1994) from micro-torsion experiments.
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3. Applications

We use TNT plasticity to investigate several phenomena that are related to plasticity at the micron scale
in this section. For simplicity, we neglect the elastic deformation such that the material is incompressible.
Accordingly, the deviatoric strain gradient tensor 1;;, becomes the same as the strain gradient tensor 7.

3.1. Bending of thin beams

Consider bending of ultra-thin beams under plane-strain conditions. The Cartesian reference frame is set
such that the x; axis coincides with the neutral axis of the beam, and bending is applied in the (x|, x;) plane.
A unit beam width is taken in the out-of-plane (x;) direction. The curvature is designated x and the beam
thickness is designated 4. Strains in the Cartesian reference frame are given by

€11 = —€2 = KX, e =0, (52)

where ¢, is obtained from the assumptions of plane strain deformation (e3; = 0) and incompressibility
(es = 0). The nonlocal strain gradients are calculated according to Eq. (20), by an integral average of the
strain field over the representative volume. For example

iz :1_16 /V (—en&)dv = 1 /V [— k(o + &)E]dV = . (53)
Similar calculations give all the nonzero components of strain gradients as
Mz = Mo = 7K, Mo = Mo = K. (54)
The effective strain € and effective strain gradient 5 are given by
2
€= %;qxz\, =K. (55)

The monotonically increasing bending curvature x results in proportional deformation under which the
flow theory of TNT coincides with the deformation theory. The constitutive equation (28) give nonva-
nishing deviatoric stresses as

, . a
oy = —0y = SIgn(xz)ﬁ, (56)
where sign(x,) stands for the sign of x, and o is the flow stress given in Eq. (26).
The equilibrium equation (50) and traction-free boundary conditions on the top and bottom surfaces of
the beam (x, = 4+4/2) give the hydrostatic stress

O = —307,. (57)
The traction at the cross-section of the beam is
o =0y, + %akk = sign(xz)% (58)
which gives a pure bending moment M as
W2 oo
M= /m T holods, (59)

This moment—curvature relation differs from the corresponding result for MSG plasticity derived by Huang
et al. (2000a) by a term of order ¢* which is negligibly small. The difference between TNT and MSG
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plasticity theories results from the higher-order stresses, which exist only in MSG plasticity and are on the
order of /2. Huang et al. (2000a) already pointed out that the moment—curvature relation is insensitive to ¢2.

3.2. Torsion of thin wires

We apply TNT plasticity to investigating torsion of thin wires. The Cartesian reference frame is set such
that the x; and x, axes are within the cross-section of the wire, while the x; axis coincides with the central
axis of the wire. The twist per unit length is designated x and the radius of the wire is designated a. The
nonvanishing strains in the Cartesian reference frame are

K K

E)Q, €3 = €3 = Exl. (60)

The nonlocal strain gradients are calculated by integral average of the strain field as in Eq. (20). For ex-
ample,

€13 = €31 = —

_l
’1231—1

€

/V (61352—62351)&/: —K. (61)

Similar calculations lead to the rest of the nonlocal strain gradients

M3 = N3 = —K, M3 = M3 = K. (62)
The effective strain e and effective strain gradient # are given by
1
€ = ——Kr, =K, 63
= n (63)

where r = \/x} + x3 is the radius in polar coordinates (r, ).

The monotonically increasing twist x results in proportional deformation under which condition the flow
theory coincides with the deformation theory. The constitutive equation (28) give nonvanishing deviatoric
stresses as

, , sin 6 , , cos0
0\, = 0y = ———0, Oy = 0y, = ——0,
13 31 \/g 23 32 \/§
where o is the flow stress given in Eq. (26), and 0, the polar angle in polar coordinates.

The equilibrium equation (50) and traction-free boundary conditions on the lateral surface of the wire
(r = a) give a vanishing hydrostatic stress, i.e.,

Ok = 0. (65)

The shear stresses in the cross section of the wire ¢}, and ¢}, correspond to a pure torque 7" which is found
from integration

2 a
T:ﬁn/o or’dr. (66)

This torque versus twist-per-unit-length relation differs from the corresponding equation for MSG plas-
ticity derived by Huang et al. (2000a) by a negligible term of order ¢>.

(64)

3.3. Growth of microvoids

The nucleation, growth and coalescence of microvoids is a common fracture mechanism of ductile
metals. Although there have been significant studies on the mechanics of void growth based on classi-
cal plasticity theory (e.g., Rice and Tracy, 1969; Gurson, 1977; Tvergaard, 1990; Huang, 1991; Needleman
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et al., 1992), these studies do not show any dependence on void size since classical plasticity theories do not
involve an intrinsic material length. It is therefore of interest to investigate the effect of void size on the void
growth phenomena, particularly for micron- and submicron-sized voids. In this section, we use TNT
plasticity to investigate the growth of a spherical void in an infinite medium subjected to remote spherically
symmetric tension.

A spherical void of initial radius Ry in an infinite medium is subjected to remote spherically symmetric
tension, ¢*. The spherical coordinates (R, 0, ¢) are used. The solid is incompressible, so that the non-
vanishing displacement in spherical coordinates is

2
= % Uo,

(67)

Ug

where u is the displacement on the void surface. The nonvanishing strains in spherical coordinates are

R2
€ERR — —26()0 = —26¢¢ = —ZR—guo. (68)

The nonlocal strain gradients are calculated by the integral averaging formula given in Eq. (20). For ex-
ample,

1 6R2
NRrrr = 7 /V erpérdV = R—40Mo, (69)
€ cell

where terms of order ¢? are neglected. By similar calculations one can find all the nonzero components of
the nonlocal strain gradients,

RZ
Nrrr = —2Mpgy = —2More = _2’7R¢¢ = _2’7¢R¢ = —2Mppr = _2’7¢¢R = 6R_2”0~ (70)

The effective strain e and effective strain gradient 5 are given by

R2 5R2
e=2R—gu0, 17:3\/%R—2u0. (71)

The monotonically increasing remote stress o> causes the displacement u, at the void surface to increase.
The deformation in the process is proportional such that the flow theory of TNT coincides with the de-
formation theory, and the constitutive equation (28) give nonvanishing deviatoric stresses as

—2g, (72)

/ / /
Tpg = =209 = =204y = =3

where o is the flow stress given in Eq. (26).
The equilibrium equation (50) and traction-free boundary conditions on the void surface (R = Ry) give
the hydrostatic stress as

R o+
u = — 30 — 6/ w dR. (73)
Ry

As R approaches infinity, all deviatoric stresses vanish, such that Egs. (72) and (73) lead to the remotely
applied spherically symmetric stress,

vy
0'°O:2/ —dR. 74

This equation differs from the corresponding MSG expression (Huang et al., 2000a) by a negligible term of
order /2.
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3.4. Cavitation instabilities

A void in an elastic—plastic solid will grow unstably at sufficiently high mean stresses, a phenomenon
called cavitation instability (Bishop et al., 1945; Huang et al., 1991). Fleck and Hutchinson (1997) and
Huang et al. (2000a) have investigated the effect of void size on cavitation instability by the strain gradient
plasticity theories. In this section, we investigate cavitation instability using the TNT theory.

A spherical void in an infinite, incompressible solid is subjected to remote spherical symmetric tension
a>. The spherical coordinates (R, 0, ¢) in the initial configuration and (r, 0, ¢) in the current configuration
are used, where we use R to designate the initial radius of a material point in the undeformed configuration,
and r to denote the current radius of the same material point in the deformed configuration. The void
radius is denoted by R, and ry in the initial and current configurations, respectively. It is important to
distinguish between these two configurations because finite strain effects play a crucial role in cavitation
instability.

Cavitation is driven by the elastic energy stored in the remote field (Huang et al., 1991); therefore, it is
essential to include elasticity in the constitutive model. We use the following elastic-power-law-hardening
uniaxial stress—strain relation,

ot (0= {

Ee if e<ey,
Orr€’  if € > ey,

(75)

where E is Young’s modulus, N, the plastic work hardening exponent (0 <N < 1), and ey, the yield strain
and is related to the reference stress by o.r = Eel ™.
The incompressibility of the solid requires

R — Rg = = rg. (76)

Its derivative with respect to time gives the particle velocity in the current configuration,

P 77
Ur—r_r_zr()v ( )

where 7y is the velocity of the void surface. The strain rates in the current configuration are

dv, . . v,
= dr’ €0 = €pp = 7 (78)

6[’}”

Because the velocity field is irrotational, we may integrate the strain rate tensor with respect to time to
obtain strains in finite deformation as

r
R

The nonlocal rates of strain gradients in the current configuration are calculated by the integral averaging
formula given in Eq. (20). For example

>
675 .

1
Ty = — .rr rdV =0 80
Ny [e /Vce" € C 1”4 ro ( )

€ = —21n%7 € = €gp = In (79)

where terms of order ¢? are neglected. By similar calculations one can find all the nonzero components of
the nonlocal rates of strain gradients

. . . . . . . 6r; .
Mo = —2000 = =200 = —2Mppp = —2Mgpp = — 2090, = =209, = 740”0- (81)

Their integration with respect to time gives strain gradients in finite deformation,
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I 1

Moy = =209 = —2Mgrg = —2Mpggp = —2Mgrp = —2Mgpr = —2M g9 = 6<§ - ;) (82)

The effective strain € and effective strain gradient 5 are given by

r 2 r
e=2In(g) =31 (3+R3>

83
(D s *)
T=Vo\r"7¥) ~°V2 P - R r]

where the radius R of the material point in the initial, undeformed configuration has been eliminated by Eq.
(76).
The constitutive equation (28) give nonvanishing deviatoric true stresses in the current configuration

0, = =204 = =20, = —30, (84)

r 3

where o is the flow stress given in Eq. (26).
The equilibrium equation (50) and traction-free boundary conditions on the void surface (r = ry) give the
hydrostatic stress as

aMz—%g—é/'ﬁ%;@dn (85)
ro

As r approaches infinity, all deviatoric stresses vanish, such that Eqgs. (84) and (85) lead to the remotely
applied spherically symmetric stress,

am:2/ %w. (86)

This relation between the void radius, ry, in the current configuration and the remotely applied stress, o>,
again differs from the MSG result of Huang et al. (2000a) by a negligible term of order ¢*>. The numerical
integration of Eq. (86) has shown that, for each plastic work hardening exponent N, there always exists a
maximum value for the remotely applied stress ¢°°. This maximum value of remotely applied stress, which
typically occurs when the void radius r reaches 1.3-3 times the initial void radius Ry, is called the cavitation
stress and is designated o; it represents the intrinsic limit for mean stress in a material.

3.5. Particle-reinforced composite

Lloyd (1994) studied an aluminum matrix reinforced by silicon carbide particles and observed increases
in strength as the particle diameter was reduced from 16 to 7.5 pm with the particle volume fraction fixed at
15%. Classical plasticity cannot explain this size dependence because its constitutive model does not possess
an internal material length. In this section, we use TNT plasticity to model the size dependence of com-
posite. A rather simple model mimicking Lloyd’s (1994) experiments is developed, in which several ap-
proximations are made in order to obtain an analytical solution.

The model consists of a spherical particle of radius « embedded in a concentric spherical matrix layer
with an outer radius a,,. The ratio of radii represents the particle volume fraction ¢ in the composite,

—=c. (87)

The particle is elastic, while the matrix is modeled as an elastic—plastic incompressible solid. The system is
subjected to spherical symmetric tension, g, on the outer surface.
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Strains inside the particle are hydrostatic, ¢; = €,0;;. The displacement continuity across the particle/
matrix interface gives

up(R = a) = epa, (88)

where uz is the displacement in the radial direction. Similar to void growth in Section 3.3, the incom-
pressibility of the matrix material gives the displacements, strains and nonlocal strain gradients the same as
Eqs. (67)—(70), except that the displacement u, is now replaced by €,a. In particular, the strains on the outer
surface (R = ay,) are

€rr = —2€pp = —2€4p = —2¢€pC, €=2¢,c at R = ap, (89)

where ¢ is the particle volume fraction in Eq. (87), and e, the effective strain. It is observed, for an in-
compressible solid, the spherical symmetric strains are identical to those in uniaxial compression,

(€rrs €00, €99) = —2€pc(1, =1, — 1), (90)

where —2¢,c is the (compressive) “uniaxial strain” on the outer surface, which is consistent with e(=2¢,c)
being the uniaxial tensile strain.

The flow stress and deviatoric stresses can be found from Eqgs. (26) and (72), respectively. On the outer
surface (R = ay,), they are given by

5 7
0 = Oref \/j‘2(2epc) + 3\/;6p;c4/3 at R = Am, (91)

Opp = —204 = =20, = ~20 at R = ay,. (92)

It should be pointed out that the spherical symmetric stresses can be decomposed into a hydrostatic part
and a uniaxial part,

(0rr, G0, 0py) = (000, Gon, 0o0) + (Orr — 000, 0,0), (93)

where the “‘uniaxial stress” ozz — gy 1s the same as the effective stress o, as seen from Eq. (92). The hy-
drostatic part (agg, 099, 099) does not cause plastic deformation.

The applied stress, o, at the outer surface can be determined from the equilibrium equation (50) and
continuity condition of stress tractions across the particle/matrix interface. The applied stress is then related
to the strain ¢, in the particle via the elastic properties of the particle as well as the plastic properties of the
matrix. In order to mimic Lloyd’s (1994) uniaxial tension experiments, however, we focus on the ““uniaxial
stress’ (or effective stress) o and the “uniaxial strain” (or effective strain) e on the outer surface. From Egs.
(89) and (91), we have

3 /57 5 b
o= arefwz(e) +2 \/;501/36 - ¢ [orf (€)) + 27\/%“2#2501/36- (94)

We have fitted the uniaxial stress—strain relation of aluminum from Lloyd’s (1994) experiments by a power-
law, o, f(€) = 461€%133 MPa, which is an excellent representation for the entire range of strain reported in
experiments. Other material parameters are also taken from Lloyd’s (1994) experiments as shear modulus
1 = 28.5 GPa, particle volume fraction ¢ = 15%, particle diameter 2a = 7.5 and 16 um. The Burgers vector
of aluminum is & = 0.286 nm, while the coefficient in Taylor’s model is « = 0.7. For these material prop-
erties, the relation between the effective stress ¢ and the effective strain € in Eq. (94) is shown in Fig. 2. The
curve at the bottom is the uniaxial stress—strain curve for aluminum without SiC reinforcements, i.e., the
power-law relation ¢ = 461¢%13* MPa fitted from Lloyd’s (1994) experiments. The other two curves in Fig. 2
correspond to particle diameter = 7.5 and 16 um, respectively. These two curves clearly predict the size
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Fig. 2. The effective stress o versus the effective strain e for an Al matrix reinforced by SiC particles. The curve at the bottom is Lloyd’s
(1994) experimental stress—strain curve for aluminum (without SiC reinforcements), ¢ = 461¢"!3> MPa. The other two curves corre-
spond to particle diameter = 7.5 and 16 um, respectively.

effect observed in experiments: the smaller the particles are, the harder the material become. Moreover, the
two predicted curves based on TNT plasticity agree well with the corresponding experimental curves re-
ported by Lloyd (1994), even though the present spherically symmetric model may be overly simplistic.

4. Comparison with experiments
4.1. Micro-indentation test

Finite element method has been developed for the theory of TNT plasticity. This method will be detailed
in a forthcoming paper. The indentation hardness has been calculated by the numerical method and
compared with the experimental data given in Nix and Gao (1998) for polycrystalline and single crystal
copper. The finite element analysis has confirmed that there are only negligible differences between TNT
and MSG theories in prediction of experimentally measurable quantities.

When the depth of indentation, 4, is significantly larger than 10’s of microns, the strain gradients effects
become negligible and the corresponding hardness degenerates to the hardness Hj in classical plasticity. The
plastic work hardening exponent is determined as N = 0.3 from the uniaxial stress—strain data for copper
documented by McLean (1962), which is consistent with the experiments of Fleck et al. (1994) for poly-
crystal copper. The reference stress in uniaxial tension is g,y = 408 MPa. This leads to a prediction of the
indentation hardness H, = 834 MPa for a large depth of indentation (>>microns), which agrees with the
experimentally measured hardness for polycrystal copper discussed by Nix and Gao (1998).

The Burgers vector for copper is b = 0.255 nm. The empirical constant « in the Taylor model, which
should be on the order of 1 (Nix and Gibeling, 1985), is determined to be 0.7 by fitting micro-indentation
hardness data for polycrystal copper. Fig. 3 presents the theoretically predicted micro-indentation hardness
(H /HO)Z, versus the inverse of indentation depth, 1/, where H is the micro-indentation hardness, Hy, the
indentation hardness without the strain gradient effects, and /%, the depth of indentation. The experimental
data of McElhaney et al. (1998), as replotted by Nix and Gao (1998), are shown in Fig. 3 for comparison.
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Fig. 3. Depth dependence of the hardness of polycrystal copper. The solid line is the theoretically predicted hardness. The triangles are
experimental data from McElhaney et al. (1998); H is the micro-indentation hardness, H,, the indentation hardness without strain
gradient effects (i.e., for large depth of indentation), /, the depth of indentation.

It is clearly observed that the predicted hardness agrees well with the experimentally measured micro-
indentation hardness data over a wide range of indentation depth, from one tenth of a micron to several
microns. The parameter o estimated from the experimental data has the correct order of magnitude.
Moreover, the numerical results based on TNT plasticity do give a straight line in Fig. 3, consistent with the
estimate based on dislocation models (Nix and Gao, 1998).

4.2. Micro-torsion test

Fig. 4 compares the predictions from TNT plasticity with the micro-torsion experiment of Fleck et al.
(1994). The uniaxial stress—strain relation ¢ = o.rf(€) used in the analysis is taken from the micro-tension
data also reported by these authors. The only adjustable parameter in TNT theory is the empirical coef-
ficient o which is on the order of 1 from macroscopic experimental observations (e.g., Nix and Gibeling,
1985). If o is taken to be 1, we find a maximum of 14% discrepancy between the theory and experiment. This
discrepancy may be attributed to extraordinarily large plastic strain involved in the wire twisting experi-
ment of Fleck et al. (1994), which reaches as large as 120% on the wire surface. At such a strain level, there
are currently no reliable data on uniaxial stress—strain behavior. (The maximum strain reported in Fleck
et al.’s uniaxial tension experiment is around 10%.) Moreover, the analysis in Section 3.2 is limited to
infinitesimal deformation, while very large strain occurred in the experiments of Fleck et al. (1994). In view
of these considerations, the comparison in the torsion case is not unreasonable.

4.3. Micro-bending test

Fig. 5 compares the predictions of TNT with the micro-bending test of thin Ni beams by Stolken and
Evans (1998). The uniaxial stress—strain relation o = o/ (¢) used in the analysis is taken from their micro-
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Fig. 4. Comparison of the TNT theory with the micro-torsion test of Fleck et al. (1994). Solid lines are the theoretical predictions; a is
the wire radius; 7, the torque; k, the twist per unit length.
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Fig. 5. Comparison of the TNT theory with the micro-bending test of Stolken and Evans (1998). Solid lines are the theoretical pre-
dictions; 4 is the beam thickness; b, the beam width; M, the bending moment; oy, the initial yield stress; ¢;, the maximum strain on the
surface.

tension data. The empirical coefficient « is taken to be 1.2. Excellent agreement is found between theory and
experiment.

5. Discussion
The TNT theory proposed in this paper follows the same guiding principles as our previously proposed

MSG theory. Both TNT and MSG are aimed to model size dependent plasticity over a scale from a fraction
of a micron to 10’s of microns. Both theories are established on the foundation of Taylor’s model of
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dislocation hardening. We have shown that TNT and MSG give identical predictions for micro-bending,
micro-torsion, void growth, cavitation instability, and micro-indentation. The two theories differ in their
basic theoretical framework. In MSG, the density of geometrically necessary dislocations is treated as a
higher-order local variable. In TNT, the density of geometrically necessary dislocations is treated as a
nonlocal variable expressed in terms of an integral average of plastic strain.

The trade-off between MSG and TNT is clear. The MSG is a higher-order but local theory where both
strain and strain gradients are treated as local variables. The advantage of MSG is its constitutive for-
mulation remaining local such that stresses and higher-order stresses are related pointwise to strains and
higher-order strains. In contrast, the advantage of TNT is the simplicity of its governing equations and
constitutive laws all remaining “classical” in that no higher-order stresses and strains are involved.

The integral average in Eq. (18) is in fact identical to a finite difference representation of a derivative. For
example, in the one-dimensional case, Eqgs. (18) and (19) reduce to

de 1[4
a7 ), o 5)
where
L2 s 63
I, = / &dé =< 96
s 5 (96)

Using the two-point integration rule of Gaussian quadrature in evaluating the integral of Eq. (95), we
obtain

Oc  e(x +A&) —e(x — A)

where
L,
AE = Wik (98)

It is clear from this example that the cell size ¢. of TNT is analogous to the step size in the finite difference
representation of a derivative.

We can also compare TNT and MSG theories from a partial-differential-equations (PDE) point of view.
The govern equations in classical continuum mechanics are second order PDEs for displacements. The
Nix-Gao strain gradient law of Eq. (7) introduces a first order gradient in the constitutive equations of
continuum mechanics, leading to a third order PDE. However, an odd-ordered PDE in continuum me-
chanics is always ill posed because one needs to apply the same number of boundary conditions on each
boundary. This can be clearly seen from a one-dimensional problem with boundary conditions given at the
two ends. A third order PDE would require unequal number of boundary conditions at the ends. This
problem is resolved very differently in TNT and MSG. In MSG plasticity, we augment the third order PDE
to fourth order by introducing the work conjugate of strain gradients (i.e. the higher-order stresses) on the
mesoscale level. The governing PDE in MSG are thus of fourth order, and additional boundary conditions
come from the higher-order stress tractions. In TNT plasticity, we reduce the third order PDE back to
second order by writing the strain gradients as a nonlocal integral average of strains, which is equivalent to
a finite difference representation of strain gradients in terms of strain values in the neighborhood of a
material point. In some sense, what we are trying to do is to evenize the order of PDE’s in continuum
mechanics. From this point of view, it is clear that the cell size /. of TNT cannot be zero because in that
limit the order of PDE increases by 1. The finite step size is necessary to keep the order of differential
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equations from increasing; at the same time it should also be taken as small as possible in practical cal-
culations for accurate estimate of the strain gradients.

6. Summary

In this paper, the following objectives have been achieved:

(1) We have proposed a TNT non local theory of plasticity to model size-dependent plasticity at the
micron scale. This theory falls within the essential structure of classical plasticity theories except that the
effect of geometrically necessary dislocations is introduced in the constitutive framework as a nonlocal
variable measuring the curvature of plastic deformation in a representative volume. The TNT theory
conforms to the same guiding principles as our previously proposed theory of MSG. The basic postulates
are that the flow stress is governed by the Taylor hardening model and that the essential structure of
conventional plasticity such as normality is retained.

(2) For illustration purposes, we have applied the TNT plasticity to micro-bending, micro-torsion, void
growth, cavitation instability and particle-reinforced composites in this paper. We have shown that the
TNT theory gives practically identical predictions as the MSG theory. The constitutive equations of TNT
are similar to the classical plasticity theories, which is significantly simpler than a higher-order theory such
as MSG, and may have advantage in practical applications.

(3) We have shown that the TNT theory gives predictions which are in agreement with experimental
results obtained from micro-indentation, micro-torsion and micro-bending tests.
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